LAPORAN PRAKTIKUM STATISTIKA DASAR
PRAKTIKUM I
Statistika Deskriftif I
Asisten : 1. Windari Gilang
2. Feby Indriana Y
Nama : Ade Sumantri
NIM : 0910960021
LABORATORIUM STATISTIKA
JURUSAN MATEMATIKA
FAKULTAS MIPA
UNIVERSITAS BRAWIJAYA
2010
1. Dasar Teori
Mean ( nilai rata-rata dari suatu gugus data ) merupakan suatu ukuran pusat data bila data itu diurutkan dari yang terkecil sampai yang terbesar atau sebaliknya. Mean diperoleh dengan cara menjumlahkan semua nilai yang ada pada suatu gugus data yang kemudian dibagi dengan banyaknya nilai tersebut. (Himasta, 2009)
Keterangan :
N = jumlah seluruh data
Xi = data sampel ( x1,x2,. . .,xn)
Rata-rata merupakan ukuran pemusatan yang sangat sering digunakan. Keuntungan dari menghitung rata-rata adalah angka tersebut dapat digunakan sebagai gambaran atau wakil dari data yang diamati. Rata-rata peka dengan adanya nilai ekstrim atau pencilan.
(Dinoyudha, 2010)
(Agung, 2007)
Median ( nilai tengah dari data yang telah diurutkan ) merupakan sekelompok data yang telah diurutkan dari yang terkecil sampai yang terbesar adalah nilai pengamatan yang tepat berada di tengah-tengah jika banyaknya pengamatan itu ganjil atau rata-rata kedua nilai pengamatan yang di tengah jika banyaknya pengamatan genap. (Himasta, 2009)
Keterangan :
Me = median
L0 = nilai batas bawah dari kelas yang memuat median
c = lebar kelas antara nilai batas bawah dan nilai batas atas dari kelas yang memuat median
n = banyaknya observasi (= total frekuensi)
Fm0 = jumlah frekuensi dari semua kelas di bawah kelas yang memuat median
fm = frekuensi dari kelas yang memuat median
Median merupakan suatu nilai ukuran pemusatan yang menempati posisi tengah setelah data diurutkan
(Dinoyudha, 2010)
(Agung, 2007)
Modus adalah nilai yang yang paling sering muncul atau yang mempunyai frekuensi paling tinggi. (Himasta, 2009)
Keterangan :
Mod = modus
L0 = nilai batas bawah dari kelas yang memuat modus
C = lebar kelas antara nilai batas bawah dan nilai batas atas dari kelas yang memuat modus
f10 = selisih frekuensi kelas yang memuat modus dengan frekuensi kelas sebelumnya
f20 = selisih frekuensi kelas yang memuat modus dengan frekuensi kelas sesudahnya, (Himasta, 2009)
Modus adalah nilai yang paling sering muncul dari serangkaian data. Modus tidak dapat digunakan sebagai gambaran mengenai data
(Dinoyudha, 2010)
(Agung, 2007)
Varian adalah harga rata-rata hitung dari pangkat dua simpangan-simpangan antara nilai-nilai pengamatan dengan harga rata-rata hitung dari kumpulan data tersebut. Varian merupakan ukuran dari pangkat dua simpangan. (Himasta, 2009)
σ2 = (Σ(xi - rerata)2)/(n-1)
Variansi (variance) dinotasikan sebagai S2 atau σ2 adalah ukuran penyebaran data yang mengukur rata-rata kuadrat jarak seluruh titik pengamatan dari nilai tengah (meannya).
(Dinoyudha, 2010)
(Agung, 2007)
Standard deviasi adalah suatu nilai yang diperoleh dengan cara menarik akar pangkat dua dari varian atau merupakan ukuran penyimpangan sejumlah data dari nilai rata-ratanya. (Himasta, 2009)
Keterangan:
S = standard deviasi
n = jumlah seluruh data
Xi = nilai (xi,x2,...,xn) untuk data tunggal atau nilai tengah untuk data Berkelompok
(Agung, 2007)
Simpangan baku (standar deviation) dinotasikan sebagi s atau σ, menunjukkan rata-rata penyimpangan data dari harga rata-ratanya. Simpangan baku merupan akar pangkat dua dari variansi.
(Dinoyudha, 2010)
(Agung, 2007)
Range adalah selisih antara nilai terbesar ( nilai maksimum ) dengan nilai terkecil ( nilai minimum ) pada suatu gugus data. Range bukan merupakan ukuran penyebaran data yang baik karena ukuran ini hanya memperhatikan kedua nilai ekstrem dan tidak mengatakan apa-apa mengenai sebaran bilangan-bilangan yang ada diantara kedua nilai ekstrem tersebut. (himasta, 2009)
Range = Nilai Maksimum – Nilai Minimum
Rentang (Range) dinotasikan sebagai R, menyatakan ukuran yang menunjukkan selisih nilai antara maksimum dan minimum. Rentang cukup baik digunakan untuk mengukur penyebaran data yang simetrik dan nilai datanya menyebar merata. Ukuran ini menjadi tidak relevan jika nilai data maksimum dan minimumnya merupakan nilai ekstrim
(Dinoyudha, 2010)
2. Metodologi (Flowchart)
Copy C1 ke C2,C3,C4, dan C5
|
Hitung nilai mean, median, & St.Dev data C1-C5 menggunakan Minitab
|
Hasil (Descriftif Statistic) |
Tambahkan setiap data dgn 29
|
Kalikan setiap data dgn 16
|
Hitung nilai Standar deviasi data, C6, C7 menggunakan Minitab
|
Hasil (Descriftif Statistic) |
3. Hasil dan Pembahasan
Input data
Output data “Statistik Deskriftif”
Penghitungan Manual
Mean, Data > = = 25,6
D1_65 > = = 28,6
D1_130 > = = 32,93
D1_10 > = = 24,93
D1_-25 > = = 22,6
Median, yakni mengambil nilai tengah dari suatu kelompok data yang sudah di urutkan dulu nilainya dari yang terkecil hingga yang terbesar, dan nilai yang diberi lingkaran di bawah merupakan nilai tengah dari kelompok masing2 data tersebut.
Data > 8, 10, 11, 14, 17, 20, 21, 23, 24, 28, 28, 31, 35, 42, 72
D1_65 > 8, 10, 11, 14, 17, 21, 23, 24, 28, 28, 31, 35, 42, 65, 72
D1_130> 8, 10, 11, 14, 17, 21, 23, 24, 28, 28, 31, 35, 42, 72, 130
D1_10 > 8, 10, 10, 11, 14, 17, 21, 23, 24, 28, 28, 31, 35, 42, 72
D1_-25 > -25, 8, 10, 11, 14, 17, 21, 23, 24, 28, 28, 31, 35, 42, 72
St. Deviasi,
Data > S2 = 3587,6 >> S2 = 256,2571 >> S = 16,00803
D1_65 > S2 = 4973,6 >> S2 = 355,2571 >> S = 18,84827
D1_130 > S2 = 13648,93 >> S2 = 974,9238 >> S = 31,22377
D1_10 > S2 = 3792,93 >> S2 = 270,9238 >> S = 16,45976
D1_-25 > S2 = 5981,6 >> S2 = 427,2571 >> S = 20,6702
St. Deviasi untuk Data, Data+29, dan Data*16
Data > S2 = 3587,6 >> S2 = 256,2571 >> S = 16,00803
Data+29> S2 = 3587,6 >> S2 = 256,2571 >> S = 16,00803
Data*16> S2 = 918425,6 >> S2 = 65601,83 >> S = 256,1285
4. Kesimpulan
Penghitungan untuk data C1-C5 yang dilakukan dengan program minitab dengan penghitungan secara manual memperlihatkan nilai yang tidak terlalu jauh berbeda, hanya saja pada program minitab penghitungan yang hasilnya berupa pecahan decimal akan dibulatkan menjadi dua angka dibelakang koma, sementara dalam penghitungan manual praktikan memberikan nilai sesuai hasil penghitungan aslinya tanpa melakukan pembulatan, sehingga nilai dari penghitungan manual lebih tepat dibandingkan dengan program minitab. Begitu pula untuk data C1, C6, dan C7.
Perbandingan antara standar deviasi dengan range adalah bahwa setiap data dan nilai pada range atau standar deviasi memiliki perbedaan yang konstan, yakni dimana nilai dari range merupakan akar kuadrat dari standar deviasi.
Sementara perbandingan antara standar deviasi dengan variansi adalah bahwa variansi merupakan pangkat tiga dari nilai standar deviasi, hal itu dibuktikan dengan penghitungan manual yang hasil dari setiap data yang sama untuk standar deviasi dan variansi adalah menunjukkan nilai yang konstan.
Pencilan (outlier) adalah suatu data yang jauh berbeda dibandingkan terhadap keseluruhan data. Data yang jauh berbeda ini disebabkan oleh kesalahan pada saat sampling, analisis, atau terjadi pada saat pemfilteran. Pencilan dapat menyebabkan hal-hal berikut:
· Residual yang besar dari model yang terbentuk atau E[e] _ 0
· Varians pada data tersebut menjadi lebih besar
· Taksiran interval memiliki rentang yang lebar
Pencilan dapat dideteksi dengan metode grafis, Boxplot, atau Leverage Values, DfFITS, Cook’s Distance, dan DfBETA(s). Pencilan dapat ditanggulangi dengan membuang observasi ke-i yang dianggap pencilan. Adapun alternatif lainnya adalah menggunakan metode Least Trimmed Square dalam penaksiran model regresi, yang biasanya menggunakan OLS.
(Soemartini, 2007)
Hubungan antara Range dengan Standar deviasi adalah apabila range semakin besar maka standar deviasi juga akan besar tapi tidak selamanya perubahan dari range akan mempengaruhi besar nilai standar deviasi, adanya perubahan tersebut apabila terjadi peningkatan atau penurunan nilai yang sangat signifikan dari range maka hal itu dapat mempengaruhi nilai dari standar deviasi
DAFTAR PUSTAKA
Himasta. 2009. Statistika Deskriftif. http:// statistika/STATISTIKA DESKRIPTIF SCC HIMASTA.htm/ di akses 06-04-2010
Lesmoko, Agung. 2007. Statistika Deskriftif. http://www.teknokrat.ac.id/ di akses 02-04-2010
Soemartini. 2007. Pencilan (Outlier) jurusan Statistika. Universitas Padjajaran-Jatinangor
Read More